

FEATURES

- ➤ 3.0V~5.5V Wide Power Range, Half-Duplex
- ESD Protection for RS-485 I/O Pins ±15kV, Human Body Model
- ➤ Bus Fault Tolerance and Withstand Voltage Reach ±15V
- ➤ 1/8 Unit Load, Allow Up to 256 Transceivers on the Bus
- Driver Short-Circuit Output Protection
- ➤ Low Power Off Function
- > Receiver Open-Circuit Failure Protection
- Strong Anti-Noise Ability
- > Integrated Transient Voltage Suppression Function
- ➤ Data transmission up to 14Mbps in an electric noise environment
- Available in SOP8, DIP8, MSOP8/8μMAX/VSSOP8 and DFN3*3-8 packages

PRODUCT APPEARANCE

Provide green and environmentally friendly lead-free package

DESCRIPTION

KRN3086E is a RS -485 transceiver with $3.0V\sim5.5V$ wide power supply, bus port ESD protection capacity of over 15kV HBM, bus withstand voltage range of $\pm15V$, half duplex, low power consumption, and fully meet the requirements of TIA / EIA-485 standard.

KRN3086E includes a driver and a receiver, both of which can be enabled and closed independently.

When both are disabled, both the driver and the receiver output are high resistance state. KRN3086E has 1/8 load, which allows 256 KRN3086E transceivers to be connected to the same communication bus. It can realize error-free data transmission up to 14Mbps.

KRN3086E has a working voltage range of 3.0~5.5V, and has the functions of fail-safe, current-limiting protection, over-voltage protection, etc.

PIN CONFIGURATION

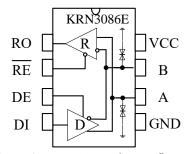


Figure 1 KRN3086E Pin Configuration

1

PIN DESCRIPTION

PIN	SYMBOL	DESCRIPTION
1	RO	Receiver Output. When /RE is low and if A - B\ge -10mV, RO will be
2	/RE	high; if A - B≤-200mV, RO will be low. Receiver Output Enable. Drive /RE low to enable RO; RO is high impedance when /RE is high. Drive /RE high and DE low to enter low-power shutdown mode.
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive /RE high and DE low to enter low-power shutdown mode.
4	DI	Driver Input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.
5	GND	Ground.
6	A	non-inverting Receiver Input and non-inverting Driver Output.
7	В	Inverting Receiver Input and Inverting Driver Output
8	VCC	Positive Supply.

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	VCC	+6.5	V
Control Input Voltage	/RE, DE, DI	-0.3~VCC+0.5	V
Receiver Input Voltage	A, B	-15~+15	V
Receiver Output Voltage	RO	-0.3~VCC+0.5	V
Operating Temperature Ranges	T_{A}	-40~125	°C
Storage Temperature Range	$\mathrm{T_{stg}}$	-60~150	°C
Lead Temperature		300	°C
	SOP8	470	mW
Continuous Power Dissipation	MSOP8	830	mW
	DIP8	700	mW

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

2

DRIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Differential Driver Output (No load)	$ m V_{OD1}$		3		5.5	V
Differential Driver	V	Figure 2, RL = 54 Ω , VCC=3.3V	1.5		VCC	V
Output	V _{OD2}	Figure 2, RL = 54 Ω , VCC=5V	1.5		VCC	V
Change in Magnitude of Driver Differential Output Voltage (NOTE1)	$\Delta { m V}_{ m OD}$	Figure 2, RL = 54 Ω			0.2	V
Driver Common-Mode Output Voltage	V _{OC}	Figure 2, RL = 54 Ω			3	V
Change in Magnitude of Common-Mode Output Voltage (NOTE1)	$\Delta { m V}_{ m OC}$	Figure 2, RL = 54 Ω			0.2	V
Input High Voltage	$ m V_{IH}$	DE, DI, /RE	2.0			V
Input Low Voltage	$ m V_{IL}$	DE, DI, /RE			0.8	V
Logic Input Current	I_{IN1}	DE, DI, /RE	-2		2	μΑ
Output Short-circuit Current, Short-circuit to High	I_{OSD1}	short-circuit to 0V~12V			250	mA
Output Short-circuit Current, Short-circuit to Low	I _{OSD2}	short-circuit to -7V~0V	-250			mA

(Unless otherwise noted, Temp= $T_{MIN}\sim T_{MAX}$, Temp= $25^{\circ}C$).

NOTE1: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

RECEIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Current (A, B)	I _{IN2}	DE = 0 V, VCC=0 or 3.3/5V			125	μΑ
		$V_{IN} = 12 \text{ V}$				

3

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Current (A, B)	$ m I_{IN2}$	$DE = 0 V,$ $VCC=0 \text{ or } 3.3/5V$ $V_{IN} = -7 V$	-100			μΑ
Positive Input Threshold Voltage	V _{IT+}	-7V≤V _{CM} ≤12V			-10	mV
Reverse Input Threshold Voltage	V_{IT}	-7V≤V _{CM} ≤12V	-200			mV
Input Hysteresis Voltage	V_{hys}	-7V≤V _{CM} ≤12V	10	30		mV
Receiver Output High Voltage	$ m V_{OH}$	$I_{OUT} = -2.5 \text{mA},$ $V_{ID} = +200 \text{ mV}$	VCC-1.5			V
Receiver Output Low Voltage	V_{OL}	$I_{OUT} = +2.5 \text{mA},$ $V_{ID} = -200 \text{ mV}$			0.4	V
Three-State Output Current at Receiver	I _{OZR}	0.4V <v<sub>0<2.4V</v<sub>			±1	μΑ
Receiver Input Resistance	R_{IN}	-7V≤V _{CM} ≤12V	96			kΩ
Receiver Short-Circuit Output Current	I_{OSR}	0 V≤V ₀ ≤VCC	±8		±90	mA

(Unless otherwise noted, Temp= $T_{MIN}\sim T_{MAX}$, Temp=25°C).

SUPPLY CURRENT

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
		/RE=0V, $DE=0V$,		240	650	μA
	I_{CC1}	VCC=3.3V				·
	1001	/RE=0V, $DE=0V$		270	750	
		VCC=5V		270	750	μΑ
Supply Current	I _{CC2}	/RE=VCC,				
		DE=VCC,		250	650	μΑ
		VCC=3.3V				
		/RE=VCC,		280	750	4
		DE=VCC, VCC=5V		280	750	μΑ
		/RE=VCC,		0.2	10	4
Shutdown Current	 T	DE=0V, VCC=3.3V		0.2	10	μΑ
	I_{SHDN}	/RE=VCC, DE=0V,	0.2		10	
		VCC=5V		0.2	10	μΑ

4

DRIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Driver Differential Output Delay	t _{DD}	$R_L = 60\Omega$,		20	40	ns
Driver Differential Output Transition Time	$t_{ m TD}$	$C_L = 100 \text{pF},$ <u>Figure 3</u> & <u>Figure 4</u>		12	28	ns
Drive Propagation Delay from Low to High	t _{PLH}			20	40	ns
Drive Propagation Delay from High to Low	t _{PHL}	$R_L = 27\Omega$, Figure 3 & Figure 4		20	40	ns
t _{PLH} -t _{PHL}	t_{PDS}			1	8	ns
Driver Enable to Output High	t _{PZH}	$R_L = 110\Omega$,			55	ns
Driver Enable to Output Low	$t_{ m PZL}$	Figure 5 & Figure 6			55	ns
Driver Disable Time from Low	t_{PLZ}	$R_L = 110\Omega$,			85	ns
Driver Disable Time from High	t_{PHZ}	Figure 5 & Figure 6			85	ns
In Shutdown mode, Enable to Output High	t _{DSH}	$R_L = 110\Omega$, <u>Figure 5</u> & <u>Figure 6</u>		20	100	ns
In Shutdown mode, Enable to Output Low	$t_{ m DSL}$	$R_L = 110\Omega$, <u>Figure 5</u> & <u>Figure 6</u>		20	100	ns

RECEIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver Input to Output from Low to High	t _{RPLH}			60		ns
Receiver Input to Output from High to Low	t_{RPHL}	C _L =15pF Figure7 & Figure8		60		ns
$ t_{RPLH} - t_{RPHL} $	$t_{ m RPDS}$			3	10	ns

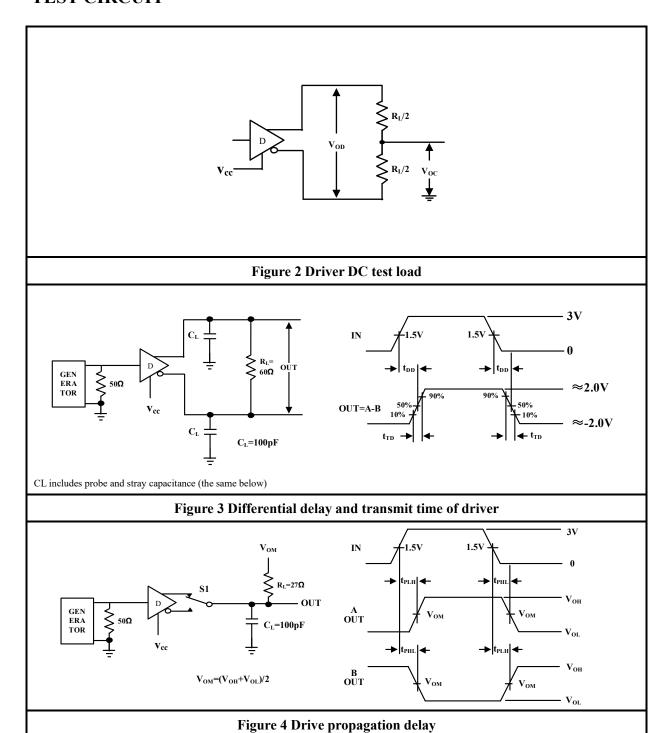
5

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver Enable to Output Low	$t_{ m RPZL}$	C _L =15pF <u>Figure7</u> & <u>Figure8</u>		15	40	ns
Receiver Enable to Output high	t _{RPZH}	C _L =15pF <u>Figure7</u> & <u>Figure8</u>		15	40	ns
Receiver Disable Time from Low	$t_{ m RPLZ}$	C _L =15pF <u>Figure7</u> & <u>Figure8</u>		25	55	ns
Receiver Disable Time from high	$t_{ m RPHZ}$	C _L =15pF <u>Figure7</u> & <u>Figure8</u>		25	55	ns
In Shutdown Mode, Enable to Output High	t_{RPSH}	C _L =15pF Figure7 & Figure8		150	500	ns
In Shutdown Mode, Enable to Output Low	t_{RPSL}	C _L =15pF Figure7 & Figure8		150	500	ns
Time to Shutdown	t _{SHDN}	NOTE2	50		300	ns

NOTE2: If the enable inputs are RE=high and DE=low for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 300ns, the device is guaranteed to have entered shutdown.

FUNCTION TABLE

Driver Function


CONTROL		INPUT	OUT	PUT	
/RE	DE	DI	A	В	
X	1	1	Н	L	
X	1	0	L	Н	
0	0	X	Z	Z	
1 0 X Z(shutdown)					
X=irrelevant; Z=high impedance.					

Receiver Function

CON	CONTROL		OUTPUT			
/RE	DE	A-B	RO			
0	X	≥-10mV	Н			
0	X	≤-200mV	L			
0	X	Open/short circuit	Н			
1	X	X	Z			
2	X=irrelevant; Z=high impedance.					

TEST CIRCUIT

7

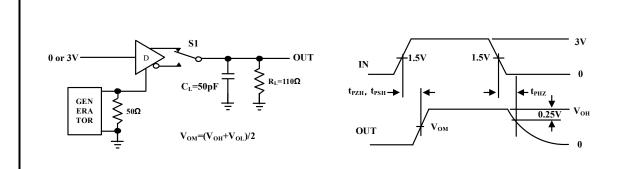


Figure 5 Drive enable and disable time

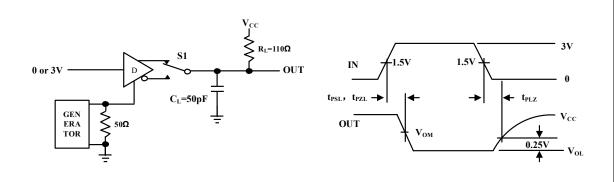


Figure 6 Drive enable and disable time

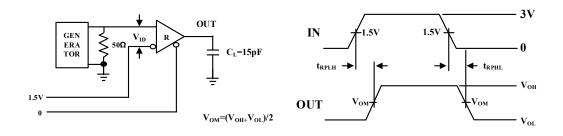
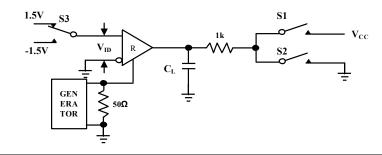
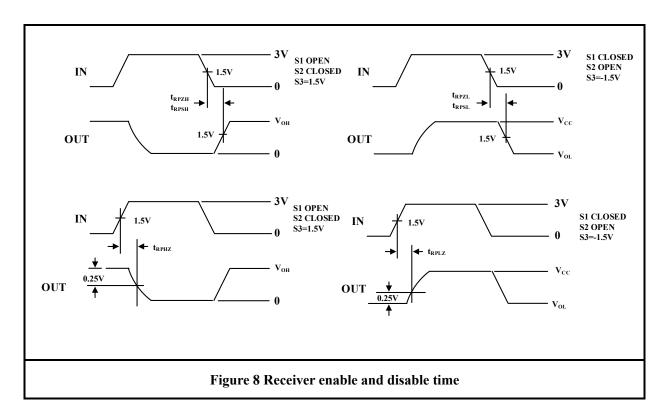




Figure 7 Receiver propagation delay test circuit

8

ADDITIONAL DESCRIPTION

1 Sketch

KRN3086E is a half-duplex high-speed transceiver with 3.0V~5.5V wide power supply, bus port ESD protection capacity of more than 15kV HBM, bus DC withstand voltage of more than ±15V, used for RS-485/RS-422 communication, including a driver and receiver. It has the functions of fail-safe,over-voltage protection and over-current protection. KRN3086E realizes error -free data transmission up to 14Mbps.

2 Allowing up to 256 transceivers on the bus

The input impedance of the standard RS485 receiver is $12k\Omega$ (1 unit load), and the standard driver can drive up to 32 units loads. The receiver of KRN3086E transceiver has 1/8 unit load input impedance (96k Ω), which allows up to 256 transceivers to be connected on the same communication bus in parallel. These devices can be combined arbitrarily or with other RS485 transceivers. Any combination of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

3 Driver output protection

Over-current protection features fast short circuit protection in the mode voltage range (refer to typical operating characteristics), which can prevent excessive output current and power dissipation caused by faults or by bus contention.

4 Typical applications

4.1 Bus Networking: KRN3086E RS485 transceiver is designed for bidirectional data communication on multi-point bus transmission line. Figure 9 shows a typical network application circuit. These devices can also be used as linear repeaters with cables longer than 4000 feet. In order to reduce reflection, terminal matching should be carried out at both ends of the transmission line with its characteristic impedance, and the length of branch lines outside the main line should be as short as possible.

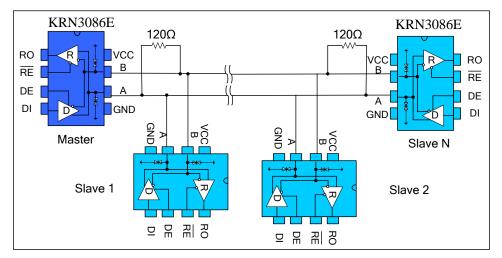


Figure 9 Bus type RS485 half-duplex communication network

10

4.2 Hand in hand Networking: also known as daisy chain topology, is the standard and specification of RS485 bus wiring, and is the RS485 bus topology recommended by TIA and other organizations. The wiring mode is that the main control equipment and a plurality of slave control equipment form a hand-held connection mode, as shown in <u>Figure 10</u>, and the hand-held mode is no branches. This wiring mode has the advantages of small signal reflection and high communication success rate.

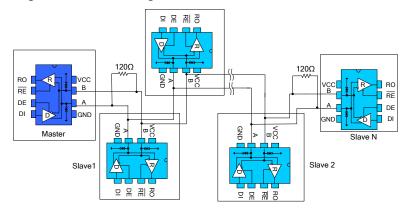
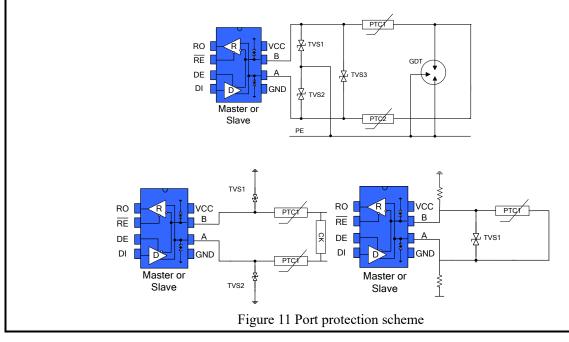
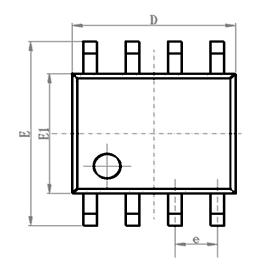
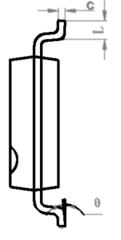



Figure 10 Hand in hand RS485 half-duplex communication network

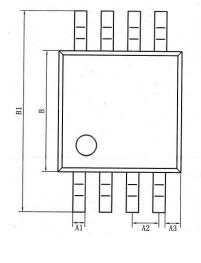
4.3 Bus port protection: in severe environment, RS485 communication port is usually provided with electrostatic protection, lightning surge protection and other additional protection, and even the plan to prevent 380V market electricity access is needed to avoid the damage of intelligent instrument and industrial control host. Figure 11 shows three common RS485 bus port protection schemes. The first is the scheme of three-level protection by connecting TVS devices in parallel with A,B port to the protective ground, TVS devices in parallel with A,B port, gas discharge tube in parallel to the protective ground; the second is the scheme of three-level protection by connecting TVS in parallel with A,B port to the ground, thermistor in series with A,B port, and varistor in parallel with A,B port; the third is the scheme of three-level protection by connecting AB with pull-up or pull-down resistor to power and ground respectively, connecting TVS between A & B, A or B port connecting thermistor.

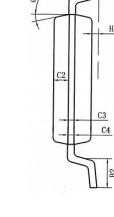


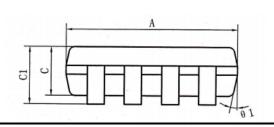

SOP8 DIMENSIONS


PACKAGE SIZE

TACKAGE SIZE								
SYMBOL	MIN./mm	TYP./mm	MAX./mm					
A	1.40	-	1.80					
A1	0.10	-	0.25					
A2	1.30	1.40	1.50					
b	0.38	-	0.51					
D	4.80	4.90	5.00					
Е	5.80	6.00	6.20					
E1	3.80	3.90	4.00					
e		1.27BSC						
L	0.40	0.60	0.80					
С	0.20	-	0.25					
θ	0°	-	8°					

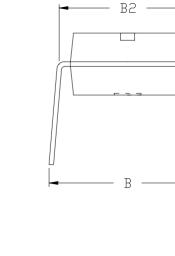





MSOP8/8µMAX/VSSOP8 DIMENSIONS

PACKAGE SIZE

FACKAGE SIZE					
SYMBOL	MIN./mm	TYP./mm	MAX./mm		
A	2.90	3.0	3.10		
A1	0.28		0.35		
A2	0.65TYP				
A3	0.375TYP				
В	2.90	3.0	3.10		
B1	4.70		5.10		
B2	0.45		0.75		
С	0.75		0.95		
C1			1.10		
C2	0.328 TYP				
СЗ	0.152				
C4	0.15		0.23		
Н	0.00		0.09		
θ	12°TYP				



DIP8 DIMENSIONS

PACKAGE SIZE

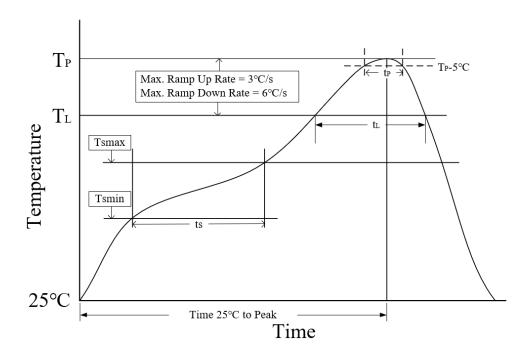
SYMBOL	MIN./mm	TYP./mm	MAX./mm
A	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2	2.54TYP		
A3	1.525TYP		
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60

DFN3*3-8 DIMENSIONS

A	0.70		1
			0.80
A1	0.00	0.02	0.05
A3		0.203 REF	
D	2.90	3.00	3.10
Е	2.90	3.00	3.10
D1	2.35	2.45	2.55
E1	1.55	1.65	1.75
b	0.2	0.25	0.33
e		0.65 TYP	
L	0.35		0.45

www.krnsemi.com 15 Rev.1 -- 16 December 2019

ORDERING INFORMATION


TYPE NUMBER	PACKAGE	PACKING
KRN3086ESA	SOP8	Tape and reel
KRN3086EUA	MSOP8/VSSOP8/8μMAX	Tape and reel
KRN3086EPA	DIP8	Tube
KRN3086ETK	DFN3*3-8	Tape and reel

Tapered package is 2500 pcs/reel. The DFN3*3-8 package is 5000 pcs/reel. DIP8 is packed with 50 pieces/tube in tubed packaging.

www.krnsemi.com 16 Rev.1 -- 16 December 2019

REFLOW SOLDERING

Parameter	Lead-free soldering conditions	
Ave ramp up rate $(T_L \text{ to } T_P)$	3°C/second max	
Preheat time ts (T _{smin} =150°C to T _{smax} =200°C)	60-120 seconds	
Melting time $t_L(T_L=217^{\circ}C)$	60-150 seconds	
Peak temp T _P	260-265°C	
5°C below peak temperature t _P	30 seconds	
Ave cooling rate (T _P to T _L)	6°C/second max	
Normal temperature 25°C to peak temperature T _P time	8 minutes max	